

SPECIFICATIONS

System Parameters	
Dimensions	204(L) x 130(W) x 385(H) mm
Handheld Weight	1.74 kg (including GCP base)
Voltage	15.2 V
Ingress Protection	IP54
Communication Interfaces	Wireless LAN, USB, Ethernet
Battery Pack Dimensions	134(L) x 64.6(W) x 167(H) mm
Battery Capacity	5870 mAh
Internal Storage	256 GB
Maximum Continuous Observation Time	30 mins / Run
Battery Operation Time	4 hours / 1pce
Relative Accuracy	≤1 cm
Absolute Accuracy	≤5 cm

System Requirements

D-H100 Field (Tablet)	
OS	Android 8 or more
RAM	6 GB or more

I'DADC D I		
LiDAR Sensor Parameters		
Scan Rate	320,000 pts/s	
Range Accuracy	±3 cm	
Detection Range	120 m	
FOV	280° (Horizontal) x 360° (Vertical)	
Laser Class	Class 1 (IEC60825-1 : 2014)	
Camera Parameters		
Camera Type	360° panoramic lens combinations	
Data Format	MP4 INSV	
Image Resolution	6080×3040 (2 : 1)	
Video Resolution	5760×2880 @ 30 fps	
RTK Module (Optional Backpack Kit)		
Supported Constellations	GPS + BeiDou + Glonass + Galileo + QZSS. Support 5 satellites and 16 frequencies	
Back Pack Weight	3.2 kg	
RTK Accuracy	1 cm+1 ppm	

LiDAR360MLS (PC)	
OS	Windows10/11 (64-bit)
СРИ	Intel® Core™ i5 or i7 (8 cores / 16 threads, single-core performance of 4 GHz or higher)
RAM	16 GB or more
Storage	SSD with a transfer speed of 100 MB/s or higher
Graphics Card	NVIDIA GPU with 8 GB or more, VRAM and Compute Capability 5.0 or higher

Standard Components

- D-H100
- GCP base
- Battery Case Battery
- Battery Case Cover
- Battery Charger
- LAN Cable
- Charging Cable USB Cable
- USB Memory Strap
- Carrying case Quick Start Manual
- Instruction Manual
- D-H100 Field (Tablet Application) *Tablet not included.
- LiDAR360MLS (PC Application)
- MicroSD Card

BackpackGNSS Module

- GNSS Cable
- Quick Start Manual

Backpack Kit (Optional)

TOPCON CORPORATION

75-1 Hasunuma-cho, Itabashi-ku, Tokyo 174-8580, Japan Phone: (+81)3-3558-2993 Fax: (+81)3-3960-4214 https://www.topconpositioning.asia

- Specifications may vary by region and are subject to change without notice.
 Bluetooth®word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such marks by Topcon is under license.
- Other trademarks and trade names are those of their respective owners.

Your Local Authorized Dealer is:

Mobile Scanner D-H100

The D-H100 is a handheld mobile scanner that uses LiDAR SLAM technology allowing you to scan even in the most challenging environments.

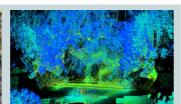
*SLAM Technology: A modern technique that uses LiDAR Technology & Imagery Sensors that has been broadly adopted in surveying for fast and accurate mapping of complex environments.

Handy and quick scanning solution for any project!

Quick & Smart 3D Data Capture with SLAM Technology

Obtain detailed 3D data simply by walking through the site—even in narrow, complex, or hard-to-reach areas. With D-H100, you can quickly cover disaster sites, buildings, and structures where using traditional surveying is challenging.

Choose the scanner model that fits your workflow: a handheld model for flexible mobility or a backpack model for large-area coverage. Both deliver accurate measurements across a wide range of applications.


The captured 3D data helps you to visualize your sites, making the D-H100 an essential tool for construction planning, documentation, and design.

Use Case: This scanner can ascertain any and all current conditions in 3D.

Surveying

D-H100 can acquire data on current conditions in a variety of environments like: Forest, rivers, embankments, cities, parks, underground, tunnels, natural disaster sites, mines, and more.



Civil Engineering

Get a full understanding of your construction site with D-H100 in 3D. It offers a wide array of uses including site reconnaissance, initial surveys, progress management, temporary construction/construction planning, calculating volumes and more.



Building Construction

D-H100 can be used both indoors and outdoors, so it can be utilized for BIM, facilities, plants, 3D modeling, digital twins, and more.

Compact LiDAR

- 16-line scanner
- Maximum scanning range: 120m
- 320,000 points per second

Selectable measurement formats

- Handheld model type
- Backpack type

Panoramic camera

• 5.7K resolution and 30-fps video enables accurate and precise color rendering

Real-time display

• The Field Software allows visualizing the pointclouid data during data collection.

SLAM system

 A practical piece of kit, with combinations of not just SLAM-only, but also RTK-SLAM, PPK-SLAM, and GCP

SLAM analysis

 Automated analysis using SLAM analysis software

Dedicated field software

Display pointcloud in real-time. Supports your data collection with its intuitive operation.

D-H100 Field

Main configuration and data acquisition can all be done via a tablet.

- Project management
- Check status
- Measurement configuration
- Check gathered data
- RTK configuration Output data
- Record GCPs (ground control points)

Dedicated analysis software

Transform your walked path into a georeferenced trajectory using SLAM Analysis.

- Automated SLAM analysis
- RTK/PPK processing
- Adjust GCPs (ground control points)
- Output data (LAS)
- Color-code point groups (RGB)
- Dimension measurements Cross-section measurements